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Semi-empirical models based on in-situ geotechnical tests have been the standard-of-practice for 

predicting soil liquefaction since 1971. Recently, geospatial prediction models utilizing free, 

readily-available data were proposed using satellite remote-sensing to infer subsurface traits 

without in-situ tests. Using 15,222 liquefaction case-histories from 24 earthquakes, this study 

assesses the performance of 23 models based on geotechnical or geospatial data using 

standardized metrics. Uncertainty due to finite sampling of case histories is accounted for and 

used to establish statistical significance. Geotechnical predictions are significantly more efficient 

on a global scale, yet successive models proposed over the last twenty years show little 

demonstrable improvement. In addition, geospatial models perform equally well, or better, for 

large subsets of the data – a provocative result considering the relative time- and cost-

requirements underlying these predictions. Given the demonstrated potential of Geospatial 

models to predict soil liquefaction, efforts are made to extend the use of these models to also 
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predict the ensuing infrastructure damage and loss. Towards this end, the present study focuses 

on structures built atop shallow foundation systems. Utilizing damage-survey data and insurance 

loss-assessments for 62,000 such assets, functions for predicting liquefaction-induced damage 

and loss in near real-time are developed. 
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Chapter 1. INTRODUCTION  

Liquefaction is a considerable hazard during an earthquake and is characterized by the 

reduction or loss of the strength and stiffness of soils induced by earthquake shaking or other rapid 

loading. The state-of-practice for predicting the occurrence and severity of soil liquefaction at 

regional-scale presently relies on (a) surficial geology maps that are typically too general to be 

accurate at site-specific scales; and/or (b) in-situ geotechnical tests that are typically too costly and 

time-consuming to be feasible over large areal extents. While semi-empirical models based on in-

situ geotechnical test have been the standard-of-practice for predicting soil liquefaction since 1971, 

recent exploratory research has proposed liquefaction prediction-models based on free, remotely-

sensed geospatial information. These “geospatial” models rely on satellite remote-sensing to infer 

subsurface traits without in-situ tests and could transform the assessment of liquefaction hazard by 

providing an inexpensive and rapid means of predicting hazards. At the same time, recent 

earthquakes have resulted in unprecedented data for both severity of ground failure due to 

liquefaction and the resulting infrastructure damage and loss. This study will use the large amount 

of data collected from the 2010-2016 Canterbury, New Zealand, Earthquake Sequence (CES) to 

rigorously study the performance of (a) traditional in-situ geotechnical liquefaction models based 

on cone penetration tests (CPT); and (b) geospatial models based on methods developed by Zhu 

et al. (2015, 2017). Additionally, the best performing geospatial models will be evaluated for 

predicting foundation damage and economic losses in the field. 

This manuscript will follow the “journal style” with a brief summary of the liquefaction 

prediction models and methodology of performance analysis, followed by Chapters 2 and 3 
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covering two journal papers to study the topics discussed above. A brief conclusion will follow at 

the end with a bibliography and appendix for additional output figures.  

1.1 LIQUEFACTION PREDICTION MODELS 

Liquefaction prediction models can generally be deliminated in terms of complexity into three 

tiers: (1) wholly-empirical models that require only geologic or geospatial data and are accessible 

to a broad userbase (e.g., Youd and Hoose, 1977; Kramer, 2008; FEMA, 2013; Zhu et al., 2017); 

(T2) semi-mechanistic “simplified stress-based” models that require in-situ measurements and are 

generally limited to use by geoengineers (e.g., Kayen et al., 2013; Boulanger and Idriss, 2014); 

and (T3) wholly-mechanistic constitutive models. While “T3” models have grown in their use by 

geoengineers, they are limited by requirements in knowledge in computational mechanics, 

uncertainties about model adequacy, interpretation of results, and are still relatively rare in their 

application to predict liquefaction triggering. This study will focus on “T1” and “T2” models 

henceforth referred to as “geospatial models” and “geotechnical models”. 

1.1.1 Geotechnical Models 

The “geotechnical models” have generally been based on a “simplified stress-based procedure” 

for evaluating the potential for liquefaction triggering. Generally, they compare an earthquake-

induced cyclic stress ratios (CSR) with the cyclic resistance ratios (CRR) of the soil. The CRR is 

usually correlated to an in-situ soil parameter such as CPT penetration resistance, SPT blow count, 

or shear wave velocity, Vs. Six such liquefaction triggering models based on the CPT will be used 

in this study: Robertson and Wride (1998), Architectural Institute of Japan (2001), Moss et al. 

(2006), Idriss and Boulanger (2008), Boulanger and Idriss (2014), and Green et al. (2018). These 

models compute a factor of safety against liquefaction by relating CSR to CRR: Factor of Safety 
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= CRR / CSR. While this provides a simple method to access hazard and is widely used in practice, 

a further step is required as nearly all existing case-histories simply document whether surface 

manifestations of liquefaction are observed. Therefore, to evaluate predictions of liquefaction at-

depth against surface observation, these six triggering models will be used in series with three 

separate manifestation models: Iwasaki et al. (1978), van Ballegooy et al. (2014), and Maurer et 

al. (2015a), who respectively proposed models named LPI, LSN, and LPIISH. These geotechnical 

models are discussed in greater detail in Sections 2.3 and 2.8.  

1.1.2 Geospatial Models 

The “geospatial models” are methods developed to approach regional liquefaction-mapping 

based on broadly available geospatial parameters which can be derived from satellite remote 

sensing. The models were advanced considering the relationship between geologic depositional 

environments and liquefaction susceptibility (Youd and Perkins, 1978). Various geospatial models 

have been proposed based on exploratory variables used as proxies for earthquake loading, soil 

density, and soil saturation, such as: peak ground velocity (PGV) from ShakeMap, slope-derived 

VS30, modeled water table depth, distance to coast, distance to river, distance to the closest water 

body, and precipitation (Zhu et al., 2015, 2017). These models have also been trained on 

observations of ground failure and thus inherently combine both liquefaction triggering and 

manifestation Geospatial models are discussed in greater detail in Sections 2.9 and 3.5.  

1.2 ROC ANALYSES 

In order to evaluate the different models’ performance, a standardized and objective method is 

needed to analyze model efficacy (i.e., the ability to predict whether sites have liquefaction 

manifestations). To this end, receiver-operating-characteristics (ROC) analyses are adopted as they 
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provide a method to relate the distributions of “positives” (e.g. liquefaction is observed) and 

“negatives” (e.g. no liquefaction is observed) using the overlap when the frequency of the 

distributions is expressed as a function of a diagnostic model index (e.g., LPI, LSN, etc.). In 

simplest terms, ROC analyses relate the probabilities of the model predicting a true-positive (i.e. 

manifestation are observed as predicted) and false-positive (i.e. manifestations are predicted but 

not observed). Further detail on ROC analysis methods are discussed in Section 2.10 and 2.11.  

1.3 FRAGILITY AND VULNERABILITY FUNCTIONS 

Once the relative-efficacy of geospatial and geotechnical models has been evaluated, the best 

performing geospatial models are used to further develop functions for predicting damage and loss 

for different types of infrastructure. A common method to represent this relation is known as 

fragility functions, which simply are a mathematical function that expresses the probability that 

some undesirable event occurs (i.e., liquefaction manifestation reaches a limit state: minor, 

moderate, or severe) as a function of some measure of environmental excitation or capacity of an 

asset (i.e. LPI, LSN, etc.). Conversely, when a degree of loss (i.e. repair costs, life-safety impacts, 

or loss of functionality) is measured as a function of environmental excitation, the function can be 

called a vulnerability function. These two terms should not be confused, vulnerability functions 

measures losses while fragility functions measure a probability of occurrence. These functions are 

discussed in further detail in Sections 3.11 and 3.12.  
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Chapter 2. FIELD ASSESSMENT OF LIQUEFACTION PREDICTION 

MODELS BASED ON GEOTECHNICAL VS. 

GEOSPATIAL DATA, WITH LESSONS FOR EACH 

2.1 INTRODUCTION 

Semi-empirical models based on in-situ geotechnical tests have been the standard-of-practice 

for predicting soil liquefaction since 1971. More recently, prediction models based on free, readily-

available data were proposed. These “geospatial” models rely on satellite remote-sensing to infer 

subsurface traits without in-situ tests. Using 15,222 liquefaction case-histories from 24 

earthquakes, this study assesses the performance of 23 models based on geotechnical or geospatial 

data using standardized metrics. Uncertainty due to finite sampling of case histories is accounted 

for and used to establish statistical significance. Geotechnical predictions are significantly more 

efficient on a global scale, yet successive models proposed over the last twenty years show little 

demonstrable improvement. In addition, geospatial models perform equally well for large subsets 

of the data – a provocative finding given the relative time- and cost-requirements underlying these 

predictions. Through this performance comparison, lessons for improving each class of model are 

elucidated.      

2.2 BACKGROUND 

Since the inception of the so-called “simplified stress-based procedure” for predicting 

liquefaction triggering (Seed & Idriss, 1971; Whitman, 1971), variants based on several in-situ 

geotechnical measurements have been developed. These include cone penetration test (CPT) 

indices, standard penetration test (SPT) blow counts, and shear-wave velocity (Vs), among others. 
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In conjunction with such measurements, “simplified” liquefaction triggering models have been 

used in virtually every seismic zone on Earth. The outputs from these triggering models are also 

often used cooperatively with other models that predict surface manifestations, such as ground 

settlement (e.g., Cetin et al., 2009), lateral spreading (e.g., Zhang et al., 2004), liquefaction ejecta 

(e.g., Maurer et al., 2017), and foundation movements (e.g., Bray and Macedo, 2017; Bullock et 

al., 2018). While this approach to modelling liquefaction occurrence and consequence is popular 

worldwide, it requires field measurements that can be costly and time consuming to perform, 

especially over large areal extents. More recently, “geospatial” models were proposed to predict 

liquefaction using data that is freely available via satellite remote-sensing (Zhu et al., 2015, 2017). 

Like the aforementioned geotechnical approach, geospatial models characterize liquefaction 

demand using common ground-motion intensity measures (IMs). But, in lieu of characterizing 

liquefaction resistance via in-situ measurements, geospatial models use surface parameters to infer 

subsurface traits. Examples of such parameters include surface slope, mineralogy, roughness, and 

wetness; distance to and elevation above rivers, streams, and other water bodies; and compound-

topographic-index, which can all be derived from satellite data. Geospatial models are particularly 

suited for applications in which time- and cost-considerations outweigh the required, expected 

model accuracy (e.g., regional earthquake simulations; planning and policy development; post-

event response and reconnaissance; and hazard assessments in regions that lack geotechnical test 

equipment). Implicit to this statement, of course, is the assumption that geotechnical models are 

more accurate than geospatial models. But are they? 

The efficacies of these two model classes (i.e., geotechnical and geospatial) have not been 

directly compared using a consistent set of case histories and standardized performance metrics. 

Such an assessment could: (1) elucidate pathways to improve each model class (i.e., what can each 
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class teach the other?); (2) provide a baseline for measuring future improvements; and (3) inform 

ensemble-modeling approaches that statistically coalesce multiple predictions (e.g., Bradley et al., 

2018). In addition, while numerous “simplified” geotechnical models have been proposed over the 

last twenty years, the popular question of “which model performs best?” remains contentious – the 

answer obscured, in part, by prior paucity and inconsistency of test cases, as well as use of 

differing, non-standard, non-objective performance metrics. Further, though often ignored, the 

performance of any model is intimately tied to the site-specific consequences, or “economies” of 

misprediction. We should thus ask not only “which model performs best?” but also “which model 

performs best for particular misprediction economies?” 

Accordingly, the objective of this study is to rigorously assess and compare the performance 

of 18 geotechnical models and 5 geospatial models using a total of 15,222 liquefaction case-

histories compiled from 24 earthquakes in 9 countries. As part of this assessment, standardized 

and objective metrics will be used to evaluate model performance, both in an overall, 

comprehensive sense, as well as for particular misprediction economies that may be encountered. 

2.3 GEOTECHNICAL AND GEOSPATIAL LIQUEFACTION MODELS 

The hierarchy of liquefaction prediction-models may be loosely defined by three tiers: (T1) 

wholly-empirical models that require only geologic or geospatial data and are accessible to a broad 

userbase (e.g., Youd and Hoose, 1977; Kramer, 2008; FEMA, 2013; Zhu et al., 2017); (T2) semi-

mechanistic “simplified stress-based” models that require in-situ measurements and are generally 

limited to use by geoengineers (e.g., Kayen et al., 2013; Boulanger and Idriss, 2014); and (T3) 

wholly-mechanistic constitutive models, which typically require many soil and model parameters, 

and which are generally limited to use by geoengineers trained in computational mechanics (e.g., 

Cubrinovski and Ishihara, 1998; Byrne et al., 2004; Ziotopoulou and Boulanger, 2016). While 
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advances to “T3” models and the enabling technologies have grown their use, their application to 

predicting liquefaction triggering remains relatively rare. This is due to the required inputs and 

operator skill, but also to uncertainties about model adequacy and the interpretation of results 

(NRC, 2016). As such, these models are not evaluated in this study, but are mentioned to provide 

proper context to the assessment of “T1” and “T2” models that is presented herein. 

 For brevity, the “T2, simplified stress-based models” are henceforth referred to as 

“geotechnical models.” Six such liquefaction triggering models will be used in this study: 

Robertson and Wride (1998), Architectural Institute of Japan (2001), Moss et al. (2006), Idriss and 

Boulanger (2008), Boulanger and Idriss (2014), and Green et al. (2018). All six are based on the 

CPT, which offers significant advantages over other in-situ tests (NRC, 2016). However, because 

triggering models predict liquefaction at-depth within a soil profile, an evaluation of their 

performance requires direct investigation of the subsurface (i.e., to assess the agreement between 

predicted and actual responses in various strata). This might be accomplished proactively using 

downhole instrument-arrays (e.g., Holzer et al., 2007) or reactively using vision penetrometers 

(Raschke and Hryciw, 1997) or geoslicers (Nakata and Shimazaki, 1997). Yet, such investigations 

are generally expensive, exceedingly rare, and may not result in definitive interpretations (e.g., 

Takada and Atwater, 2004). Thus, nearly all existing case-histories simply document whether 

manifestations of liquefaction were observed at the surface. Accordingly, to evaluate predictions 

of liquefaction at-depth against surface observations, the six triggering models will each be used 

in series with three separate manifestation models: Iwasaki et al. (1978), van Ballegooy et al. 

(2014), and Maurer et al. (2015a), who respectively proposed models named LPI, LSN, and LPIISH. 

It must therefore be understood that “geotechnical model” refers to the combined use of a 

liquefaction triggering model with a liquefaction manifestation model. There is simply no practical 
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or objective way to isolate and assess the independent performance of triggering models. While 

LPI, LSN, and LPIISH were each proposed as general “ground failure” predictors, they have been 

calibrated almost exclusively on the observed occurrence or nonoccurrence of liquefaction ejecta.  

The 18 CPT-based geotechnical models (6 triggering models ∙ 3 manifestation models) will be 

tested against the performance of 5 “T1” geospatial models. While several types of “T1” model 

exist, those of Zhu et al. (2015, 2017) are arguably the most rigorously-formulated and well-trained 

to date; they were also recently implemented into US Geological Survey (USGS) post-earthquake 

data products to provide automated content on possible earthquake impacts (e.g., Allstadt et al., 

2019). These models were trained on observations of ground-failure and thus inherently merge 

liquefaction triggering and manifestation. Three of the five models to be assessed are region 

specific - developed specifically for Canterbury, New Zealand – and will be referred to as regional 

geospatial models (RGMs). The remaining two were trained on successively larger datasets from 

global earthquakes and will be referred to as global geospatial models (GGMs). A summary of the 

23 models to be evaluated, and the symbols henceforth used to identify them, is provided in Table 

2.1. Additional model details are provided subsequently in the Methodology. 

 

Table 2.1 Summary of Geotechnical and Geospatial Liquefaction Models Evaluated in this Study 

Geotechnical Models (18) Geospatial Models (5) 

Triggering Model Symbol Manifestation Model Symbol Triggering/Manifestation Model Symbol 

Robertson & Wride (1998) 
 

Arch. Institute Japan (2001) 
 

Moss et al. (2006) 
 

Idriss & Boulanger (2008) 
 

Boulanger & Idriss (2014) 
 

Green et al. (2018) 

RW98 
 

AIJ01 
 

Mea06 
 

IB08 
 

BI14 
 

Gea18 

Iwasaki et al. (1978) 

 
van Ballegooy et al. (2014) 

 
Maurer et al. (2015a) 

LPI 

 
LSN 

 
LPIISH 

Zhu et al. (2015) Regional 1 
 

Zhu et al. (2015) Regional 2 
 

Zhu et al. (2015) Regional 3 
 

Zhu et al. (2015) Global 
 

Zhu et al. (2017) Global 

RGM1 
 

RGM2 
 

RGM3 
 

GGM1 
 

GGM2 
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2.4 DATA 

This study analyzes 15,222 liquefaction case histories resulting from 24 earthquakes, as 

summarized in Table 2.2. However, because a majority of these cases were compiled from three 

earthquakes in the Canterbury region of New Zealand, results are separately presented for these 

and the other 21 earthquakes, henceforth respectively referred to as the “Canterbury dataset” and 

“global dataset.” The details of these case-history datasets are discussed next. 

Table 2.2 Summary of Liquefaction Case Histories Analyzed 

Date Earthquake Country 
Magnitude 

(Mw) 
Number of 

Case Histories 
16/6/1964 Niigata Japan 7.60 3 
9/2/1971 San Fernando USA 6.60 2 
4/2/1975 Haicheng China 7.00 2 
27/7/1976 Tangshan China 7.60 10 

15/10/1979 Imperial Valley USA 6.53 7 
9/6/1980 Victora (Mexicali) Mexico 6.33 5 
26/4/1981 Westmoreland USA 5.90 9 
26/5/1983 Nihonkai-Chubu Japan 7.70 2 

28/10/1983 Borah Peak USA 6.88 3 
2/3/1987 Edgecumbe New Zealand 6.60 23 

24/11/1987 Elmore Ranch USA 6.22 2 
24/11/1987 Superstition Hills USA 6.54 8 
18/10/1989 Loma Prieta USA 6.93 67 
17/1/1994 Northridge USA 6.69 3 
16/1/1995 Hyogoken-Nambu Japan 6.90 21 
17/8/1999 Kocaeli Turkey 7.51 16 
20/9/1999 Chi-Chi Taiwan 7.62 34 
8/6/2008 Achaia-Ilia Greece 6.40 2 
4/4/2010 El Mayor-Cucapah Mexico 7.20 3 
4/10/2010 Darfield New Zealand 7.10 5371 
22/2/2011 Christchurch New Zealand 6.20 4806 
11/3/2011 Tohoku Japan 9.00 7 
20/5/2012 Emilia Italy 6.10 45 
14/2/2016 Christchurch New Zealand 5.70 4771 

   Total 15,222 

2.5 CANTERBURY EARTHQUAKE DATASET 

Earthquakes occurring over the last decade in the Canterbury region of New Zealand have 

resulted in case-history data of unprecedented quantity and quality. A comprehensive summary of 

these earthquakes, to include tectonic and geologic settings, seismology, and effects, is provided 
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by Quigley et al. (2016). The present study compiles case-histories from the Mw7.1, 4 Sept. 2010 

Darfield earthquake, the Mw6.2, 22 Feb. 2011 Christchurch earthquake, and the Mw5.7, 14 Feb. 

2016 Christchurch (or “Valentine’s Day”) earthquake. This effort built upon a series of successive 

compilations (Maurer et al., 2014a, 2015b, 2019), augmenting the largest of these by more than 

50% and resulting in a total of 14,948 case histories. These consist of classifications of liquefaction 

manifestations, ground-motion intensity measures, geotechnical and hydrological data, and readily 

available geospatial information. These components are succinctly summarized as follows. 

2.5.1 Liquefaction Manifestations 

All liquefaction models will be evaluated on their abilities to predict free-field surface 

manifestations on level ground – specifically liquefaction ejecta - rather than any other indicator, 

such as evidence from ground-motions, foundation movements, or lateral spreading. Sites with 

these indicators were expressly removed from the study because the models to be evaluated are 

not intended to predict them. Observations of the occurrence and severity of liquefaction ejecta 

were compiled by the authors following each of the three earthquakes and classified as “none,” 

“minor,” “moderate,” and “severe” using criteria from Green et al. (2014). This was accomplished 

using ground-reconnaissance reports and high-resolution satellite imagery compiled in the New 

Zealand Geotechnical Database (CERA, 2012). Cases in which manifestations could not be 

reliably classified are not included in this study. To facilitate model assessment, the cases are 

reclassified binomially as “No Manifestation” and “Manifestation,” where the latter are sites with 

at least “minor” manifestations per Green et al. (2014). Of the resulting 14,948 case histories 

compiled from Canterbury, 65% are “No Manifestation” and 35% are “Manifestation.”  
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2.5.2 Ground-Motion Intensity Measures 

The 23 liquefaction models use either peak ground acceleration, PGA (all geotechnical models 

and some geospatial models) or peak ground velocity, PGV (some geospatial models). For this 

study, PGAs were estimated with the Bradley (2013) procedure, which has been used in previous 

Canterbury earthquake research (e.g., Maurer et al., 2014b; van Ballegooy et al. 2015), and which 

geostatistically merges PGAs recorded at strong-motion stations with PGAs estimated by ground-

motion prediction equations. PGVs were estimated using USGS ShakeMap (Worden and Wald, 

2016), consistent with the formulation of geospatial liquefaction models that use PGV. While other 

methods for estimating these IMs are available, a prior analysis of alternatives (Baird et al., 2018) 

indicates the findings of this study should be unaffected by the methods adopted here.  

2.5.3 Geotechnical, Geospatial, and Hydrological Data 

This study analyzes CPT soundings available in the New Zealand Geotechnical Database 

(CERA, 2012) and performed at sites where liquefaction manifestations were classified as 

described above. In the process of compiling case-histories, CPTs were rejected: (1) if the depth 

of “pre-drill” significantly exceeded the depth of the ground water table; and (2) if inferred to have 

prematurely terminated on shallow gravels from a geospatial autocorrelation analysis (Anselin, 

1995). Prior to processing, CPT tip- and sleeve-measurements were aligned using cross-correlation 

(Buck et al., 2002). Extended coverage of CPT data and the exclusion criteria summarized above 

is provided in Maurer et al. (2014a, 2015b). Ground water table (GWT) depths were sourced from 

the robust, event-specific regional models of van Ballegooy et al. (2014). These models, which 

reflect seasonal and localized fluctuations across the region, were derived using monitoring data 

from ~1000 piezometers and provide a best-estimate of GWT depths immediately prior to each 

earthquake. Various geospatial parameters – to be identified subsequently in the Methodology – 
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were computed at each case-history location following the exact methods of Zhu et al. (2015; 

2017) (i.e., the developer of the geospatial models to be evaluated).  

2.6 GLOBAL EARTHQUAKE DATASET 

To compare findings in Canterbury with regions worldwide, 274 liquefaction case histories are 

compiled from 21 global earthquakes and assessed in parallel. These cases are sourced from the 

literature, to include observations of manifestation severity, CPT soundings, and estimation of 

GWT depth and ground-motion IMs, as generally reported by original investigators. When 

available, recent refinements are adopted from the literature. Whereas liquefaction was intensively 

cataloged via reconnaissance and remote sensing in Canterbury, the global cases are often 

documented in less detail, occasionally with scant information about the nature or severity of 

expression. Accordingly, while the same criteria (Green et al., 2014) were used to binomially 

classify manifestations based on ejecta (while excluding cases with other indicators of 

liquefaction), there is inevitably some uncertainty. Of the 274 global cases, 58% are 

“Manifestation” and 42% are “No Manifestation.” To properly recognize all sources of data used 

to compile this dataset, a reference list appears in the Appendix, parsed by earthquake; a table of 

relevant data for each case-history is also provided in an electronic supplement. In this regard, the 

case history assemblages of Moss et al. (2005) and Boulanger and Idriss (2014) are acknowledged 

for greatly assisting the present study. Lastly, various geospatial parameters (identified in the 

Methodology) – were computed at each case-history location per Zhu et al. (2015; 2017). 

2.7 METHODOLOGY 

The 23 liquefaction models to be evaluated in this study were identified in Table 1. Additional 

model details are now presented, followed by methods that will be used to analyze performance. 
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2.8 GEOTECHNICAL MODEL METHODOLOGY 

CPTs were analyzed for each of the 15,222 case histories using six triggering models, all of 

which compute factor-of-safety against liquefaction (FSliq) vs. depth. While the reader is referred 

to the model publications for complete details, two facts pertinent to this study are as follows. First, 

prior to using any of the six models, liquefaction-susceptible soils were inferred from the CPT 

soil-behavior-type index (Ic) (Robertson and Wride, 1998), such that soils with Ic < 2.50 were 

assumed susceptible. This criterion was developed specifically for Christchurch soils from lab tests 

on more than 2,500 samples (Maurer et al., 2019). However, because an Ic threshold of 2.50 is 

within the range of generic values commonly used in practice (i.e., 2.4-2.6), this criterion is also 

used in all analyses of the global dataset. Second, for liquefaction-susceptible soils, the IB08, BI14, 

and Gea18 models compute liquefaction resistance as a function of fines-content (FC). 

Accordingly, FC was estimated for the Canterbury dataset using a Christchurch-specific Ic – FC 

correlation (Maurer et al., 2019), and for the global dataset using a generic Ic – FC correlation 

(Boulanger and Idriss, 2014), with the former estimating FC to be ⁓10% higher for a given Ic.  

Next, the outputs from triggering analysis were input to the LPI, LSN, and LPIISH manifestation 

models. The Liquefaction Potential Index (LPI) is defined as (Iwasaki et al., 1978): 

𝐿𝑃𝐼 =  ∫ 𝐹(𝐹𝑆) ∙ 𝑤(𝑧) d𝑧
ଶ 


           (2.1) 

where F(FSliq) and w(z) are functions that weight the respective influences of FSliq and depth, z, 

on surface manifestation. Specifically, F(FSliq) = 1 – FSliq for FSliq ≤ 1 and F(FSliq) = 0 otherwise; 

w(z) = 10 – 0.5𝑧. Thus, LPI assumes that surface manifestation depends on the thickness of all 

liquefied strata in a profile’s upper 20 m, their proximity to the ground surface, and the amount by 

which FSliq in each stratum is less than 1.0. Given this definition, LPI can range from zero to 100.  
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A modified LPI was proposed by Maurer et al. (2015a) and inspired by Ishihara (1985), who 

recognized the role of the non-liquefied capping stratum, or “crust,” on suppressing surface 

manifestations. Using data from Japanese earthquakes, Ishihara (1985) proposed limit-state curves 

for binomially predicting manifestations as a function of the crust thickness (H1), among other 

factors. Using these curves, Maurer et al. (2015a) modified LPI to better capture the observed 

influence of H1. In consideration of its provenance, the result was termed LPIISH and is defined by:  

𝐿𝑃𝐼ூௌு =  ∫ 𝐹(𝐹𝑆) ∙ 𝑤(𝑧) d𝑧
ଶ 

ுభ
                                                   (2.2) 

where 

൫𝐹𝑆൯ = ൜
1 − 𝐹𝑆    𝑖𝑓 𝐹𝑆 ≤ 1 ∩  𝐻ଵ ∙ 𝑚൫𝐹𝑆൯ ≤ 3

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                     (2.3) 

𝑚൫𝐹𝑆൯ = exp ൬
ହ

ଶହ.ହ൫ଵିிௌ൯
൰ − 1                                                 (2.4) 

In Eq. (2.2), F(FSliq) and w(z) have the same objective as in LPI, but are functionally different, 

such that F(FSliq) accounts for the crust thickness via the parameter H1 and w(z) is defined by w(z) 

= 25.56 ∙ z-1. Maurer et al. (2015a) recommended a minimum H1 of 0.4 m be used, even if 

liquefiable soils are present at shallower depths. Given this constraint, LPIISH can range from zero 

to 100. 

The Liquefaction Severity Number (LSN) is an adaptation of methods for estimating post-

liquefaction volumetric strain (e.g., to predict ground settlement), modified to include a power-

law depth weighting function (van Ballegooy et al., 2014): 

𝐿𝑆𝑁 = ∫ 𝜀௩  ∙ 𝑤(𝑧) d𝑧
ଶ 


                                                             (2.5) 

where 𝜀௩ is post-liquefaction volumetric strain (%) and w(z) = 10 ∙ z-1. For a given value of FSliq, 

εv is inversely related to the soil’s initial relative density (Dr). By corollary, and assuming εv a 

sufficient index of liquefaction response, surface manifestations should diminish as the Dr of 
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liquefying soil increases. While there are several approaches to estimating 𝜀௩ (Geyin and Maurer, 

2019a), van Ballegooy et al. (2014) used that of Zhang et al. (2002), which we thus also adopt. 

LSN values can far surpass 100 when liquefiable soils are present at the immediate surface, but 

typically are between zero and 100. These values are not quantities of predicted ground settlement, 

but rather, are index values á la LPI and LPIISH that correlate to the likelihood of surface 

manifestation.  

2.9 GEOSPATIAL MODEL METHODOLOGY 

The five geospatial models have the general form P(X) = (1 + e-X)-1 where X is a series of 

geospatial variables and model coefficients, and P(X) is the likelihood of surface manifestation. In 

conjunction with this equation, the three region-specific and two global geospatial models are 

defined in Table 2.3. The variables are as follows: PGAM = magnitude-weighted peak ground 

acceleration (g) using the weighting of Youd et al. (2001); PGV = peak ground velocity (cm/s); dr3 

= distance (km) to a stream of order three or greater (Strahler, 1952); Vs30 = shear-wave velocity 

of the upper 30-m (m/s), inferred from surface topography (Wald and Allen, 2007); dr = shortest 

distance to a river (km) cataloged by Lehner et al. (2006); CTI = compound topographic index 

(Beven and Kirkby, 1979); dc = distance to coast (km); precip = mean annual precipitation (mm) 

(Fick and Hijmans, 2017); ND = dc divided by the distance from the coast to the edge of the 

sedimentary basin; and wtd = water table depth (m). GGM2 has variants for coastal and noncoastal 

locations, the distinguishing threshold being dc = 20 km. All variables were computed in 

accordance with Zhu et al. (2015; 2017), to which the reader is referred for additional information. 

 

 

 



www.manaraa.com

 

 

17

Table 2.3. Geospatial Liquefaction Model Equations 

Model Model Parameter X 

RGM1 2.053 + 1.267·ln(PGAM) – 0.239·dr3 – 9.191 · ND 

RGM2 0.316 + 1.225·ln(PGAM) + 0.145·CTI – 9.708 · ND 

RGM3 25.45 + 2.476·ln(PGAM) – 0.323·dr3 – 4.241·ln(Vs30) 

GGM1 24.10 + 2.067·ln(PGAM) + 0.355·CTI – 0.4784·ln(Vs30) 

GGM2 
(Coastal) 

12.435 + 0.301·ln(PGV) – 2.615·ln(Vs30) + 5.556 x 10-4 · precip – 0.0287·(dc)0.5 + 0.0666·dr – 0.0369 · dr · (dc)0.5 

GGM2 
(Inland) 

8.801 + 0.334·ln(PGV) – 1.918·ln(Vs30) + 5.408 x 10-4 · precip – 0.2054·dw – 0.0333·wtd 

2.10 PERFORMANCE-EVALUATION METHODOLOGY 

Standardized and objective methods are needed to analyze model efficacy (i.e., the ability to 

predict whether sites have liquefaction manifestations). Receiver-operating-characteristic (ROC) 

analyses, which are widely used in biostatistics and medical diagnostics (e.g., Fawcett, 2006; Zou, 

2007) are adopted for this purpose. In any ROC analysis, the distributions of “positives” (e.g., 

liquefaction manifestation is observed) and “negatives” (e.g., no liquefaction manifestation is 

observed) overlap when the frequency of the distributions is expressed as a function of a diagnostic 

model index (e.g., LPI, LSN, etc.). To demonstrate, two such distributions are shown in Figure 

2.1a, plotted as a function of LPI. ROC curves plot the rates of true-positive predictions (RTP) (i.e., 

manifestations are observed as predicted) and false-positive predictions (RFP) (i.e., manifestations 

are predicted but not observed) as a function of model-index “thresholds.” These thresholds are 

used to predict outcomes, such that model values above and below a threshold are respectively 

predicted to be positive and negative outcomes. Figure 2.1b illustrates the relationship among the 

positive and negative distributions, the threshold values, and the ROC curve. Low thresholds result 

in a high RFP, while high thresholds result in a low RTP, equivalent to a high rate of false-negative 

predictions (RFN), where RFN = 1 - RTP. In general, neither of these situations is desirable.  
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Figure 2.1. ROC analyses: (a) frequency distributions of liquefaction manifestation and no 

liquefaction manifestation as a function of LPI; (b) corresponding ROC curve, and illustration of 

how a ROC curve is used to assess the efficiency of a diagnostic test. 

 

The optimum threshold may be defined as that which minimizes the prediction cost: 

Cost = CFP x RFP + CFN x RFN                                                     (2.6) 

where CFP and RFP are respectively the cost and rate of false-positive predictions and CFN and RFN 

are respectively the cost and rate of false-negative predictions. Examples of false-positive costs 

include superfluous spending on design and construction (e.g., ground improvement costs), while 

false-negative costs are those resulting from liquefaction (e.g., property damage and lost 

productivity, among others). Normalizing by CFN, Eq. 2.6 is alternatively expressed as: 

Cost’ = Cost/CFN = RFP x CR + RFN                                                                  (2.7) 

where CR = CFP/CFN and is the “cost ratio” representing different misprediction economies. Low-

CR scenarios with are those where the costs of liquefaction far outweigh the costs of mitigation 

(e.g., a critical facility), while high-CR scenarios are those where the costs of mitigation far 

outweigh the costs of liquefaction (e.g., a car park). In Eqs. 2.6-2.7, RFN and RFP are defined by: 
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RFN = QFN / (QFN + QTP)                                                    (2.8) 

RFP = QFP / (QFP + QTN)                                                    (2.9) 

where QTP, QFP, QTN, and QFN are respectively the quantities of true positives, false positives, true 

negatives, and false negatives. The denominators of Eqs. 2.8 and 2.9 equal the total number of 

sites with and without observed liquefaction manifestations, respectively. It follows from Eqs. 2.6-

2.7 that two points in ROC space, (RFP1, RTP1) and (RFP2, RTP2), have equivalent performance if:  

ୖౌభି ୖౌమ

ୖూౌభି ୖూౌమ
=  

ಷು

ಷಿ
= 𝐶𝑅 = 𝑚                                                 (2.10) 

Eq. (2.10) defines the slope, m, of an iso-performance line, such that all points defining the contour 

have equal Cost’ (Provost and Fawcett, 2001). Thus, each CR corresponds to a unique contour in 

ROC space. One such line is shown in Figure 2.1b. With 1:1 slope, it corresponds to the case where 

false positives and false negatives have equal costs. Points tangent to this line on the ROC curve 

correspond to threshold values at which Cost’ is minimized.  

To evaluate model efficacy, two different ROC-based methods will be used. The first will 

quantify comprehensive performance via the area under a ROC curve (AUC). While no single 

parameter fully characterizes performance, AUC is commonly used for this purpose due to its 

statistical significance (e.g., Fawcett, 2006). Here, AUC is the probability that sites with 

manifestations have higher computed index values than sites without manifestations. Better 

prediction models thus have higher AUC. As shown in Figure 2.1b, random guessing is depicted 

in ROC space by a 1:1 line through the origin, for which AUC = 0.5. A perfect model, for which 

AUC = 1.0, plots as a point at (0,1), indicating the existence of a threshold value that perfectly 

separates the two distributions (e.g., all cases with manifestation have LPI above the threshold; all 

cases without manifestation have LPI below the threshold). To account for finite-sampling of case 

histories, bootstrap simulations will be performed to quantity ROC uncertainty, and in turn, to 
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compute confidence intervals on each model’s AUC. This will illustrate the sensitivity of model 

performance to the particular case-histories compiled for analysis. To assess whether differences 

in AUC could arise from chance (i.e., due to finite sampling), tests of statistical significance will 

be performed per the method of DeLong et al. (1988), which is specific to ROC analyses. All 

models will be compared to one another to determine which, if any, are statistically better.    

While AUC is widely used, it reflects overall performance across all misprediction economies. 

As a result, the model with highest AUC, the model with lowest misprediction rate (RFN + RFP), 

and the model most optimal when CFN ≠ CFP could conceivably all be different. This is shown in 

Figure 2.2a, where models A and B have identical AUC. If CR = 1/5, iso-performance lines have 

slope m = 1/5 and define points with equal prediction cost. What that cost is depends on the lines’ 

RTP-intercepts and is given by Eq. 2.6 (the greater the RTP-intercept, the lower the cost). Since an 

iso-performance line tangent to curve B has a greater RTP-intercept than one tangent to curve A, 

model B is more optimal. That is, B is better in the “conservative” region, where models correctly 

classify most positives, but at the expense of high RFP. Conversely, and by the same logic, A is 

optimal when CR = 5 and is better in the “liberal” region, where models correctly classify most 

negatives, but at the expense of low RTP. Lastly, when CR = 1, A and B perform equally well. 

Similarly, a model with higher AUC could be less efficient in a specific region of ROC space than 

a model with lower AUC. This is shown in Figure 2.2b: model A has higher AUC and is optimal 

when CR > 0.27, but model B is optimal for all other CR. Thus, AUC reflects overall performance, 

but not the nuances described above.  

Accordingly, a second ROC-based analysis will identify the optimal model as a function of 

CR. Cost’ will be computed by Eq. 2.7 for each model over the domain 0 < CR < 2; that with 

lowest Cost’ at a given CR is most optimal. This is equivalent to the graphical analysis shown in 
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Figure 2.2a and discussed above. Together, these methods will assess model performance, both in 

a comprehensive sense, and for various misprediction economies of interest. 

              

Figure 2.2. ROC analyses demonstrating that: (a) classifiers with equivalent AUC can 

perform very differently in specific regions of ROC space; (b) classifiers with higher AUC can, 

in specific regions of ROC space, perform worse than classifiers with lower AUC. 

2.11 RESULTS AND DISCUSSION 

Utilizing the data and methodology above, 23 models were used to predict liquefaction 

manifestations for 15,222 well-documented case histories. To illustrate how ROC analyses and 

bootstrap simulations will be used to study model-performance, results for one model are first 

presented in detail; summary statistics from replicate analyses of the remaining 22 models will 

then be provided. In Figures 2.3a and 2.3b, ROC analyses of the BI14 – LPI geotechnical model 

(i.e., the BI14 triggering model used with the LPI manifestation model) are presented for the 

Canterbury and global datasets, respectively. In each case, a total of 10,000 bootstrap simulations 

were performed, from which 95%-confidence intervals (CIs) were computed. The 50th percentile 

ROC curve is equivalent to that resulting from an analysis of all case-histories without resampling. 

Two observations are made from this figure: (1) on average, the BI14-LPI model performs better 
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on the Canterbury dataset than the global dataset, with respective median AUCs of 0.83 versus 

0.77; and (2) finite-sample uncertainty is considerably greater for the global dataset. The 95% CI 

on AUC is 0.828 to 0.841 for the Canterbury dataset, and 0.709 to 0.826 for the global dataset. 

Each of these observations will be discussed further in the context all models.   

 

Figure 2.3 ROC analysis of BI14-LPI model performance in predicting liquefaction surface 

manifestation for the: (a) Canterbury dataset; and (b) global dataset. 

 

From replicate ROC analyses of all 23 prediction models, AUC summary statistics are 

compiled and presented in Figures 2.4a and 2.4b for the Canterbury and global datasets, 

respectively. Shown are each model’s median AUC and 95% CI, with results ordered by the year 

in which each model was proposed. In this regard, geotechnical models are dated in accordance 

with the triggering model but are grouped/symbolized by manifestation model. Thus, Figure 2.4 

allows for assessments to be made regarding the evolution of performance (i.e., prediction 

efficiency) through twenty years of model research and development.   

(a) (b) 
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Figure 2.4 Summary of liquefaction-model performance – quantified by AUC – for 23 

models, ordered by year proposed: (a) Canterbury dataset; and (b) global dataset. Markers denote 

median AUC; bars are 95% confidence intervals; all model acronyms are identified in Table 1. 

Trendlines developed from linear regression and do not include RGM or GGM data points.  

 

With respect to Figure 2.4, several observations are made as follows. First, the two trends 

identified in Figure 2.3 for the BI14-LPI model are true of most geotechnical models. That is, their 

performance on their Canterbury dataset tends to be somewhat better and is significantly less 

variable, relative to the global dataset. Considering all 18 geotechnical models, the average AUCs 

are respectively 0.80 and 0.77 for the Canterbury and global datasets, indicating the models are 

somewhat nearer to perfection (AUC = 1.0) than to random guessing (AUC = 0.5). The average 

95% CIs are respectively 0.015 and 0.118 for the Canterbury and global datasets. These differences 

may be attributable to the global dataset’s greater seismologic, geologic, and geomorphic diversity 

and/or because the global field-data (e.g., ground-motion IMs, CPTs) were collected over a 50-

year period using different means and methods. There are also significantly fewer global case-

histories. All else being equal, greater finite-sample uncertainty is thus expected in analyses of the 
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global data. Second, as shown in Figure 2.4, trendlines were fit to the AUC values for all 

geotechnical models; these regressions did not include the regional or global geospatial models, 

which will be discussed momentarily. Through 20-years of model development, the trendlines 

suggest improvements to AUC of 0.2% and 0.0% per year for the Canterbury and global datasets, 

respectively. It should be noted that: (i) the BI14 and Gea18 triggering models, when developed, 

were trained on case-history datasets in which 20% of data was from the Canterbury earthquakes, 

so their evaluation in Figure 2.4a is not completely unbiased, unlike the other models; and (ii) 

geotechnical models, in general, were developed with training on case-history data, some of which 

also composes the global dataset compiled herein to test performance. Specifically, the overlap 

between data originally used to train the models, and data used to test the models herein, ranges 

from 0% (RW98) to 75% (e.g., BI14), with most models having >50% overlap. Accordingly, 

whether a trend of improvement should be expected in Figure 2.4b is debatable. Nonetheless, 

successive models proposed over the last twenty years show little or no demonstrable improvement 

for the two datasets analyzed, as shown in Figure 2.4. This is despite: (i) ever-increasing data that 

can be used to test, train, and validate models; and (ii) greater knowledge of liquefaction 

mechanics, embodied by new and revised model components (e.g., magnitude scaling; depth-stress 

reduction; overburden correction). It is surmised that greater performance-variation could result if 

the models were tested on data outside the parameter space of that used to train them (e.g., 

liquefaction-susceptible soils having atypical density, depth, fines-content, age, etc.). Of course, 

liquefaction case-histories tend to have much in common, so such data is not easily attained.  

Third, it can be seen in Figure 2.4a that the three regional geospatial models perform 

remarkably well for the Canterbury dataset, with average AUC of 0.77 (versus 0.83 for all 

geotechnical models). One geospatial model – RGM3 – outperforms 16 of the 18 geotechnical 
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models. This result is provocative considering the relative complexity of the geotechnical models 

and the costs of their requisite inputs. While differences in model specificity must be 

acknowledged (RGM3 is region-specific, while the geotechnical models are not), it is nonetheless 

perplexing that a model which uses freely-available surface parameters could outperform 

established geotechnical models that use subsurface measurements. However, as shown in Figure 

2.4b, geospatial models do not perform as well on the global dataset, with global models GGM1 

and GGM2 having AUCs of 0.54 and 0.55, respectively (the models have 95% CIs of 0.47 to 0.61 

and 0.48 to 0.62, respectively). Thus, while the geospatial models do tend to be useful (e.g., 

performing better than random guessing for the compiled test cases), the geotechnical models are 

significantly more efficient. This is unsurprising when considering: (i) the diversity of 

geomorphology, topography, climate, etc. present in the global dataset; and (ii) the difficulty, given 

this diversity, of accurately inferring below-ground conditions from above-ground parameters. 

Inherently, the geotechnical models - being based on direct measurements of the subsurface - 

should have greater portability across environs. Nonetheless, the results from Canterbury in Figure 

2.4a demonstrate the provocative potential of geospatial modeling. As more test data becomes 

available, and as better geospatial predictors are identified, improved global performance should 

result. In contrast, considering the 20-year trendlines in Figure 2.4, it appears that geotechnical 

models should not be expected to soon improve greatly, if the status quo continues. Neither fine-

tuning of model parameters, nor incremental growth in training data, are likely to inflect these 

trends upwards. Arguably, this would occur only through wholesale innovation (e.g., disruptive 

changes to the in-situ characterization method, or to the fundamental modeling approach). Fourth, 

the top-performing models, as quantified via AUC, are: (i) Canterbury dataset: BI14-LPIISH (AUC 

= 0.843), Gea18-LPIISH (AUC = 0.843), and RGM3 (AUC = 0.841); and (ii) global dataset: Mea06-
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LPI (AUC = 0.788), AIJ01-LPI (AUC = 0.788), and AIJ01- LPIISH (AUC = 0.782). Thus, the top-

performing models are different for the two datasets. However, given the uncertainties of AUC 

values – particularly for the global dataset - it should be determined whether the measured 

differences in performance are statistically significant.  

Using the method of DeLong et al. (1988), P-values were computed to compare each of the 23 

models to all others. These values are presented in Tables 2.4 and 2.5 for the Canterbury and global 

datasets, respectively, and are the probabilities that AUC samples for two models could have come 

from the same distribution (i.e., that the observed difference in performance arose from chance, 

and not because one model is better than another). Large P-values can be expected when (i) 

differences between two AUC values are small; and (ii) the uncertainty of one or more of the AUC 

values is large. The popular significance level of 0.05 of adopted herein, such that P-values below 

this level indicate that models have significantly different performance. Using this criterion, Tables 

2.4 and 2.5 compare all model pairs and identify which model, if any, is statistically better.  
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Table 2.4 P-Value Matrix to Compare Model Performance for the Canterbury Dataset 

 

As seen in Table 2.4, instances of large P-values are rare for the Canterbury dataset, which can 

be partly attributed to the large quantity of case histories. Moreover, nearly every model performs 

significantly different than all others. Notable observations from Table 2.4 are: (i) among all 

geotechnical and geospatial models evaluated, no model is statistically better than all others; but 

(ii) three models are either statistically better, or not statistically different, than all others. In other 

words, three models are not bested by any others. These are BI14-LPIISH, Gea18-LPIISH, and 

RGM3. Most striking is the fact that no geotechnical model is statistically better than geospatial 

model RGM3. 

 

Statistically 
Better ↑ LPI LPIISH LSN RGM 

←  RW98 AIJ01 Mea06 IB08 BI14 Gea18 RW98 AIJ01 Mea06 IB08 BI14 Gea18 RW98 AIJ01 Mea06 IB08 BI14 Gea18 1 2 3 

LPI 

RW98  0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

AIJ01   0.000 0.000 0.000 0.000 0.177 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Mea06    0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

IB08     0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 

BI14      0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.082 

Gea18       0.000 0.000 0.000 0.000 0.004 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.362 

LPIISH 

RW98        0.530 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

AIJ01         0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Mea06          0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.002 0.000 0.000 0.000 

IB08           0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

BI14            0.271 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.943 

Gea18             0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.823 

LSN 

RW98              0.000 0.000 0.000 0.043 0.399 0.000 0.000 0.000 

AIJ01               0.760 0.000 0.000 0.000 0.000 0.000 0.000 

Mea06                0.000 0.000 0.000 0.000 0.000 0.000 

IB08                 0.000 0.000 0.000 0.000 0.000 

BI14                  0.000 0.000 0.000 0.000 

Gea18                   0.000 0.000 0.000 

RGM 

1                    0.026 0.000 

2                     0.000 

3                      
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Table 2.5 P-Value Matrix to Compare Model Performance for the Global Dataset 

 

In contrast to the Canterbury dataset, few P-values are below 0.05 for the global dataset, 

indicating that performance-differences between models are typically not statistically significant. 

Notable observations from Table 2.5 are: (i) all geotechnical models are statistically better than 

both global geospatial models; and (ii) no model is statistically superior. The previously identified 

top-performing model globally – Mea06-LPI – is statistically better than nine other models, but is 

statistically indifferent from eight others, including the top-performing models in Canterbury 

(BI14-LPIISH and Gea18-LPIISH). Thus, once statistical significance is considered, the global 

results are largely inconclusive due to the large finite-sample uncertainties of AUC values. 

Consequently, the top-performing geotechnical models in Canterbury may also be the top-

Statistically 
Better ↑ LPI LPIISH LSN GGM 

←  RW98 AIJ01 Mea06 IB08 BI14 Gea18 RW98 AIJ01 Mea06 IB08 BI14 Gea18 RW98 AIJ01 Mea06 IB08 BI14 Gea18 1 2 

LPI 

RW98   0.166 0.046 0.446 0.933 0.682 0.898 0.467 0.759 0.696 0.435 0.894 0.571 0.224 0.263 0.244 0.377 0.369 0.000 0.000 

AIJ01    0.978 0.105 0.211 0.255 0.245 0.439 0.368 0.137 0.500 0.248 0.092 0.004 0.031 0.032 0.051 0.052 0.000 0.000 

Mea06     0.040 0.135 0.162 0.120 0.657 0.135 0.066 0.441 0.186 0.026 0.020 0.004 0.009 0.021 0.021 0.000 0.000 

IB08      0.355 0.101 0.582 0.338 0.565 0.887 0.144 0.521 0.857 0.346 0.420 0.400 0.569 0.555 0.000 0.000 

BI14       0.358 0.975 0.525 0.824 0.678 0.379 0.944 0.596 0.259 0.290 0.231 0.328 0.329 0.000 0.000 

Gea18         0.870 0.598 0.931 0.466 0.511 0.855 0.461 0.205 0.220 0.140 0.224 0.224 0.000 0.000 

LPIISH 

RW98               0.458 0.759 0.490 0.472 0.973 0.544 0.181 0.240 0.245 0.380 0.367 0.000 0.000 

AIJ01            0.582 0.301 0.815 0.475 0.247 0.005 0.074 0.113 0.163 0.157 0.000 0.000 

Mea06             0.527 0.787 0.819 0.361 0.077 0.070 0.165 0.250 0.240 0.000 0.000 

IB08              0.053 0.353 0.790 0.285 0.368 0.354 0.521 0.504 0.000 0.000 

BI14               0.076 0.319 0.134 0.154 0.097 0.158 0.154 0.000 0.000 

Gea18                         0.557 0.206 0.256 0.215 0.325 0.313 0.000 0.000 

LSN 

RW98                          0.258 0.154 0.142 0.362 0.321 0.000 0.000 

AIJ01                   0.657 0.551 0.461 0.470 0.000 0.000 

Mea06                    0.678 0.493 0.510 0.000 0.000 

IB08                     0.451 0.498 0.000 0.000 

BI14                      0.792 0.000 0.000 

Gea18                                     0.000 0.000 

GGM 
1                         0.779 

2                                         
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performing models globally, but more global case-history data would be needed to confirm this, 

or to draw further conclusions about model performance.  

 

  

     
Figure 2.5 Optimal liquefaction model as a function of CR, as determined from ROC 

analyses of the Canterbury dataset, wherein “optimal” models are those within (a) 1% of optimal 

and (b) 10% of optimal; analogous analyses are presented in panels (c) and (d) for the global 

dataset. 
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As discussed, AUC is widely used to study diagnostic model behavior, but it reflects overall 

performance across all misprediction economies. To identify the most efficient model for 

particular economies, Cost’ is computed for each model at different CR values. The model with 

lowest Cost’ is identified in Figure 2.5 for CRs ranging from 0 to 2. Also, because multiple models 

could have nearly equivalent efficiency, and thus, be equally optimal, any model whose Cost’ is 

within 1% of minimum is likewise identified as “optimal.” To assess the sensitivity of results to 

this criterion, analyses are repeated by relaxing the threshold to 10%. Results for the Canterbury 

and global datasets are shown in Figures 2.5a,b and 2.5c,d, respectively. Several observations are 

made from Figure 2.5 as follows. It can be seen that while the models with highest AUC tend to 

appear in Figure 2.5 (i.e., they are optimal for some range of misprediction economies), the results 

convey more nuanced information than AUC alone. For example, as seen in Figure 2.5a, geospatial 

models RGM2 and RGM3 are the best-performing models in the conservative, or “northeast”, 

region of ROC space, considering the Canterbury dataset. Thus, for scenarios in which CFN far 

exceeds CFP, the geospatial models perform best, meaning they are very efficient at predicting 

liquefaction, but at the expense of a high rate of false-positives. Conversely, it can be seen in Figure 

2.5a that models BI14-LPIISH and Gea18-LPIISH are optimal in the range of 0.25 < CR < 1.75, or 

scenarios in which CFN and CFP are relatively more similar. It can also be seen that models with 

relatively low AUC are sometimes optimal in specific regions of ROC space. Most striking, for 

example, is that geospatial model GGM2 is the most optimal model for the global dataset at low 

CR values. This is despite the fact that its AUC, or overall prediction efficiency, was significantly 

lower than all geotechnical models. Extending the threshold for identifying optimal models to 

10%, it can be seen that each of the 23 models evaluated is “optimal” for some region of ROC 

space. Thus, Figure 2.5 provides greater insight as to when a model is likely to perform well. 
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2.12 CONCLUSIONS 

Semi-empirical models based on in-situ geotechnical tests have been the standard-of-practice 

for predicting soil liquefaction since 1971. More recently, prediction models based on free, readily-

available data were proposed. These “geospatial” models rely on satellite remote-sensing to infer 

subsurface traits without in-situ tests. Using 15,222 liquefaction case-histories from 24 

earthquakes, this study evaluated the performance of 23 models based on geotechnical or 

geospatial data using standardized and objective metrics of performance. Uncertainty due to finite 

sampling of case histories was accounted for and used to establish statistical significance. 

Geotechnical predictions were found to be significantly more efficient on a global scale, yet 

successive models proposed over the last twenty years show little demonstrable improvement. 

Moreover, geospatial models performed equally well for the Canterbury dataset, either 

outperforming or matching the performance of every geotechnical model. This is a surprising 

finding given the relative time- and cost-requirements underlying these predictions. While further 

research is needed to improve the portability of geospatial models across diverse environs, this 

assessment demonstrated their provocative potential.  

2.13 GLOBAL DATASET REFERENCES 

The sources of data used in the compilation of the global dataset are listed as follows, parsed 

by event: 1964 Mw7.6 Niigata, JPN - Ishihara and Koga (1981), Farrar (1990), Moss et al. (2003);  

1971 Mw6.6 San Fernando, USA - Bennett et al., (1998), Toprak and Holzer (2003); 1975 Mw7.0 

Haicheng, CHN - Arulandan et al. (1986), Shengcong and Tatsuoka (1984); 1976 Mw7.6 

Tangshan, CHN - Shibata and Teparaska (1988), Moss et al. (2009; 2011); 1979 Mw6.53 

Imperial Valley, USA - Diaz-Rodriguez (1984), Diaz-Rodriguez and Armijo-Palacio (1991), 
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Moss et al. (2003); 1981 Mw5.9 Westmoreland, USA - Bennett et al. (1984), Seed et al. (1984), 

Cetin et al. (2000), Moss et al. (2005); 1983 Mw7.7 Nihonkai-Chubu, JPN - Farrar (1990); 1983 

Mw6.88 Borah Peak, USA - Andrus (1986), Andrus & Youd (1987), Moss et al. (2003); 1987 

Mw6.6 Edgecumbe, NZ - Christensen (1995), Moss et al. (2003); 1987 Mw6.54 Superstition 

Hills, USA - Bennett et al. (1984), Cetin et al. (2000), Toprak and Holzer (2003), Moss et al. 

(2005), Holzer and Youd (2007); 1989 Mw6.93 Loma Prieta, USA - Mitchell et al. (1994), Pass  

(1994), Bennett & Tinsely (1995), Boulanger et al. (1995; 1997), Kayen et al. (1998), Toprak & 

Holzer (2003), Youd and Carter (2005); 1994 Mw6.69 Northridge, USA - Abdel-Haq & Hryciw 

(1998), Bennett et al., (1998), Holzer et al. (1999), Moss et al. (2003); 1995 Mw6.9 Hyogoken-

Nambu, JPN - Suzuki et al. (2003); 1999 Mw7.51 Kocaeli, TUR - PEER (2000a), Youd et al. 

(2009); 1999 Mw7.62 Chi-Chi, TWN - Lee et al. (2000), PEER (2000b); 2008 Mw6.4 Achaia-

Ilia, GRC - Batilas et al. (2014); 2008 Mw7.2 El Mayor-Cucapah, MEX - Moss et al. (2005); 

CESMD (2016), Turner et al. (2016); 2011 Mw9 Tohoku, JPN - Cox et al. (2013), Boulanger and 

Idriss (2014); 2012 Mw6.1 Emilia, ITA - Papathanassiou et al. (2015), Facciorusso et al. (2015), 

Servizio Geologico (2016). 
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Chapter 3.   ON THE EXTENSION OF GEOSPATIAL 

LIQUEFACTION MODLES TO PREDICT GROUND 

FAILURE, INFRASTRUCUTRE DAMAGE, AND 

ECONOMIC LOSS 

3.1 INTRODUCTION 

In Chapter 2, the efficacies of 23 liquefaction-prediction models were investigated using 

15,222 case-histories compiled from 24 earthquakes. These case-histories were parsed into two 

datasets: the Canterbury dataset, containing case-histories from three events in Canterbury, New 

Zealand, and the global dataset, containing case-histories from 21 globally-distributed events. 

While semi-empirical models based on the cone penetration test (CPT) performed significantly 

better on the global dataset, geospatial models performed as well or better in Canterbury than all 

18 geotechnical models evaluated. Thus, while the global portability of the geospatial models must 

be improved, their performance in Canterbury showcases a provocative potential. Given the 

demonstrated efficiency of geospatial models to predict liquefaction in Canterbury, Chapter 3 

explores their extension to also predict the magnitude of ground settlement, the occurrence and 

severity of damage to shallow-foundation systems, and the ensuing economic loss for such 

systems. If successful, geospatial models would provide a means to predict liquefaction-induced 

damage and loss in near real-time (e.g., within seconds of an earthquake occurring). This analysis 

is facilitated by unprecedented infrastructure-performance and loss data resulting from the 

Canterbury earthquakes. In particular, this study will utilize 62,009 foundation-damage surveys 

and 53,940 insurance loss assessments. The geospatial models perform fairly well in predicting 

some large-scale failure mechanisms (e.g., global settlement), however they are not good 

predictors for other small-scale failure mechanisms (e.g., dishing, hogging). Additionally, the 
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geospatial models are poor relations for less estimates, especially when trying to predict higher 

asset losses.   

3.2 BACKGROUND 

Soil liquefaction is a common cause of ground failure during earthquakes and is responsible 

for tremendous damage to infrastructure. Its effects were vividly observed during the 2010-2016 

Canterbury, New Zealand, Earthquake Sequence (CES) which induced pervasive liquefaction in 

the city of Christchurch and its environs causing ~$10B in infrastructure damage (Parker and 

Steenkamp, 2012). As the CES illustrates, accurate prediction of infrastructure damage and loss 

due to liquefaction is critical for regional hazard-mapping, city planning, engineering design, 

regulatory policy, and emergency response. The state-of-practice approaches for predicting the 

occurrence and severity of soil liquefaction at a regional-scale rely on (a) surficial geology maps 

that are typically too general to be accurate at site-specific scales; and/or (b) in-situ geotechnical 

tests that are typically too costly and time-consuming to be feasible over large areal extents. More 

recently, liquefaction-prediction models were proposed based on free, remotely-sensed geospatial 

information (Zhu et al., 2015, 2017). In contrast to geotechnical methods, “geospatial” liquefaction 

models can evaluate liquefaction potential rapidly, at infinitely many locations, anywhere in the 

world. This is made possible using geospatial proxies of soil properties relevant to liquefaction 

(e.g., proxies of soil density, soil type, saturation, and thickness of liquefiable deposit) and seismic 

parameters that are easily obtained or estimated (e.g., peak ground acceleration). Examples of such 

proxies include, among others: topographic slope; surface mineralogy; distance to water bodies; 

and compound-topographic-index, which can all be derived from satellite remote sensing. 

Chapter 2 compared the efficacy of numerous models based on geotechnical and geospatial 

data. Specifically, six CPT-based liquefaction-triggering models (Robertson and Wride, 1998; 
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Architectural Institute of Japan, 2001; Moss et al., 2006; Idriss and Boulanger, 2008; Boulanger 

and Idriss, 2014; Green et al., 2018) were each used in series with three liquefaction manifestation 

models (Iwasaki et al., 1978; van Ballegooy et al., 2014; and Maurer et al., 2015) for a total of 18 

distinct geotechnical models. These were compared to five geospatial models proposed by Zhu et 

al. (2015, 2017), three of which were proposed specifically for Canterbury, New Zealand, and two 

of which were proposed for global application. Based on an analysis of approximately 15,000 case 

histories from the CES, geospatial models performed as well or better than the geotechnical 

models. In particular, the best-performing geospatial model was “Regional Geospatial Model 3” 

(Zhu et al., 2015). In this regard, all models were evaluated on their ability to predict whether sites 

had manifestations of liquefaction at the surface (specifically liquefaction ejecta). However, the 

physical damage and monetary loss resulting from liquefaction, rather than its occurrence, are of 

greatest concern to planners, insurers, and owners of infrastructure assets. Hazard-management 

decisions are made based on damage and loss, not on factors of safety or probabilities of 

liquefaction. In this regard, the severity of ground deformation, rather than the binomial 

observation of liquefaction, would provide a more useful assessment of damage-potential for civil 

infrastructure. This study will also utilize post-earthquake foundation-damage surveys performed 

during the CES. These will be used to develop fragility functions that predict the severity of 

liquefaction-induced foundation damage using geospatial liquefaction models. Lastly, insurance-

loss assessments will be used to formulate vulnerability functions that predict economic losses 

using geospatial liquefaction models. Collectively, these extensions of geospatial modelling would 

allow for the rapid (i.e., near real-time) prediction of ground failure, infrastructure damage, and 

economic loss following an earthquake.  
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3.3 DATA 

This study analyzes post-earthquake foundation-damage surveys of 62,009 lightweight 

structures founded on several types of shallow-foundation system and overlying potentially 

liquefaction soils. These surveys were performed throughout the 2010-2016 Canterbury 

earthquake sequence by a team of more than 200 engineers. The surveys were performed under 

the auspices of the New Zealand Earthquake Commission (EQC) and were compiled by Taylor & 

Tonkin, Ltd. As part of these efforts, insurance loss assessments were performed for approximately 

53,940 structures built atop shallow foundations. The details of these datasets and some derived 

relations are discussed next. 

3.4 CANTERBURY EARTHQUAKE (CES) DATASET 

Earthquakes occurring over the last decade in the Canterbury region of New Zealand have 

resulted in case-history data of unprecedented quantity and quality, presenting a unique 

opportunity to advance the science of liquefaction modelling. A comprehensive summary of these 

earthquakes, to include tectonic and geologic settings, seismology, and effects, is provided by 

Quigley et al. (2016). Of interest in this study, the case-histories from the Mw7.1, 4 Sept. 2010 

Darfield earthquake, the Mw6.2, 22 Feb. 2011 Christchurch earthquake, the Mw5.7, the Mw5.9, 13 

Jun. 2011 Christchurch earthquake, and the Mw5.9, 23 Dec. 2011 Christchurch earthquake were 

compiled. Previous studies referenced herein also utilized case histories from the 14 Feb. 2016 

Christchurch (or “Valentine’s Day”) earthquake. The data for each earthquake includes parameters 

utilized in liquefaction model calculations such as ground-motion intensity measures, geotechnical 

and hydrological data, and readily available geospatial information. 
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3.5 GEOSPATIAL MODELS AND DATA 

There are a variety of geospatial models which correlate different explanatory variables and 

the probability of liquefaction. Model performances for the Christchurch, New Zealand region was 

analyzed in Chapter 2 using receiver operating characteristic (ROC) analyses and results are 

presented in Table 2.4. As shown in Figure 3.1 the best performing geospatial models include (1) 

a model developed for use worldwide and is referred to herein as “Global Geospatial Model” or 

abbreviated as “2017 GGM2” and (2) a model developed specifically for use in Canterbury, New 

Zealand, and is referred to herein as the “Region-Specific Geospatial Model” or abbreviated as 

“2015 RGM3”.  

  

Figure 3.1 ROC analyses comparison of Geospatial Liquefaction Models  

 
These two geospatial models were developed by Zhu et al. (2015; 2017) and have the general form: 

P(X) = (1 + e-X)-1                           (3.11) 
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where X is a series of geospatial variables and model coefficients, and P(X) is the probability of 

liquefaction manifestation and is used as an index for comparison (GLI). In conjunction with Eq. 

(3.11), these models are respectively defined by: 

 
Global Geospatial Model (Zhu et al., 2017), “2017 GGM2”:  

Location within 20 km from coast: 
    X = 12.435 + 0.301·ln(PGV) – 2.615·ln(Vs30) + 5.556 x 10-4 ·precip – 
0.0287·(dc)0.5 + 0.0666·dr – 0.0369 · dr · (dc)0.5      (3.12) 
 
Location further than 20 km from coast: 
    X = 8.801 + 0.334·ln(PGV) – 1.918·ln(Vs30) + 5.408 x 10-4 · precip – 
0.2054·dw – 0.0333·wtd         (3.13) 

 
Regional Geospatial Model (Zhu et al., 2014a), “2015 RGM3”:  

X = 25.45 + 2.476·ln(PGAM) – 0.323·dr3  – 4.241·ln(Vs30)     (3.14) 
 

where PGAM is magnitude-weighted PGA (g) computed using a magnitude scaling factor; PGV  is 

the peak ground velocity (cm/s) (USGS, 2018); Vs30 is shear-wave velocity (cm/s) of the upper 30-

m of the soil profile, estimated from topographic slope; dc is the distance to coast (km); dr is the 

distance to rivers (km); precip is the mean annual precipitation (mm); dw is the distance to nearest 

water body (calculated as minimum of dr and dc); wtd is the water table depth extracted from 

global dataset modeled by Fan et al. (2013);and dr3 is the distance to a stream of order three or 

greater, as defined by the Strahler stream-ordering method. These parameters were computed per 

the exact methodologies described in Zhu et al. (2015; 2017), to which the reader is referred for 

additional information. 

3.6 GROUND FAILURE 

The geospatial liquefaction models to be used herein were previously evaluated in Chapter 2 

on their abilities to binomially predict liquefaction ejecta on free-field level ground. Observations 

of the occurrence and severity of liquefaction ejecta were compiled by the authors following the 
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Sept. 2010, Feb. 2011, and Feb. 2016 earthquakes and classified using the Green et al. (2014) 

criteria, which ranks the manifestations as “none,” “minor,” “moderate,” and “severe.” This was 

accomplished using ground reconnaissance and high-resolution aerial and satellite imagery 

captured immediately after each event (CGD, 2012). Cases in which manifestations could not be 

reliably classified were removed (e.g., where ground reconnaissance and aerial imagery disagreed, 

or where aerial imagery was inconclusive) and resulted in a total of 14,948 case histories.   

3.7 LIQUEFACTION INDUCED SETTLEMENTS 

The CES also resulted in many measurements of ground deformations due to liquefaction, 

made possible by airborne and satellite mounted LIDAR and InSAR systems, which only recently 

have become widely accessible. These systems have allowed ground deformations to be measured 

at unprecedented regional extents following liquefaction events. Using these systems, settlements 

were measured at each location used in section 3.6 to develop fragility curves for predicting 

manifestation severity. These measured settlements are plotted against the geospatial model-index 

values, for both GGM2 and RGM3, in Figures 3.2 and 3.3, respectively.  
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Figure 3.2 GGM2 model index vs. measured ground settlement 

 

 

Figure 3.3 RGM3 model index vs. measured ground settlement 
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As seen in Figures 3.2 and 3.3, the abilities of the geospatial models to predict ground 

settlement is relatively poor. While there is a slightly positive correlation between geospatial 

model predictions and ground settlement, the correlations are very weak. This could be attributable 

to large measurement uncertainty in the observed settlement (σ = 7 cm). Thus, the geospatial 

models can predict the occurrence and severity of liquefaction ejecta in Canterbury but are much 

less capable of predicting the magnitude of ground settlement.  

3.8 FOUNDATION DAMAGE INSPECTIONS 

Inspections were performed at sites around Christchurch, New Zealand and the surrounding 

area following the CES events spanning from September 2010 to December 2011. Some properties 

were inspected only once and others were inspected multiple times, but in total 62,009 unique sites 

were inspected for building damage. The assets were categorized by foundation type, including 

(1) timber floors on piles, (2) timber on internal piles with perimeter concrete footings, (3) concrete 

slab on grade, and (4) mixed foundations. The foundations were visually inspected for different 

modes, or mechanisms, of damage. Each mode of damage was also classified by severity as minor, 

moderate, or major. The modes of damage, and criteria for classifying their severity, are shown in 

Figure 3.4 below. For locations where more than one mode of damage was observed, the severity 

of each mode of damage was also recorded.  
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Figure 3.4 Foundation damage survey mechanism type and severity. 

 

While many assets were inspected multiple times, most were not inspected in-between each of 

the individual earthquakes comprising the Canterbury sequence. In the cases where an inspection 

was performed multiple times at the same asset between events (i.e. an inspection was performed 

after the September 2010 event and after the February 2011 event), the damage inspections were 

compared to account for compounding damage estimates which might overpredict damage for the 

later event. Since the magnitude severities were general scales, future inspections with a higher 

severity than a previous survey were reduced by the previous survey severity (i.e., if damage was 

minor during a September 2010 inspection, and was moderate during a February 2011 inspection, 

it was assumed that the February 2011 earthquake was responsible for the difference). 

Additionally, some assets were only surveyed once, or were only surveyed after experiencing 
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multiple earthquake events, in which case the observe damage could have conceivably occurred 

in one of several earthquakes. For these cases, the damage severity was distributed out between 

the previous events by scaling by the liquefaction model probability for the event and relating to 

the surveyed severity: 

𝐸𝑣𝑒𝑛𝑡 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 = 𝑆𝑢𝑟𝑣𝑒𝑦 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ∗
ா௩௧ ீூ

ஊ(௩௨௦ ா௩௧ ீூᇲ௦ାௌ௨௩௬ ா௩௧ ீூ)
  (3.15) 

The result would, for example, distribute a “major” severity observed after three events into 

“minor” severities across each of the three events. This was done since it cannot accurately be 

related to which event caused the most damage, or if the series of events resulted in progressive 

damage.    

3.9 BUILDING DAMAGE SURVEYS 

Whereas insurance loss assessments are typically private and closely guarded, the unique role 

of the New Zealand government as a land insurer led to their assessment of losses for 53,940 

infrastructure assets affected by liquefaction. This loss data is available for many parcel locations 

across Christchurch, New Zealand classified by different ranges of building damage ratios (BDR). 

The BDR is the ratio of repair cost for the damage divided by the replacement cost new (RCN) of 

the asset. This data was extracted from GIS parcel data provided by Taylor & Tonkin, Ltd. which 

was classified into BDR ranges: 
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Table 3.6 Geospatial Liquefaction Model Equations 

BDR Range 
Value Assigned for Vulnerability 

Function 

0.0 - 0.10 0.05 

0.11 - 0.20 0.15 

0.21 - 0.30 0.25 

0.31 - 0.40 0.35 

0.41 - 0.50 0.35 

0.51 - 0.75 0.625 

>0.75 0.75 

Unknown *Removed 

  *Removed when developing the functions. 

 

The mid-value of the BDR range was utilized to create vulnerability functions based on the GLI 

at the centroid of the parcels since the resolution of the geospatial parameters was generally 

considerably larger than the parcel size. Relating the loss to the GLI provides a straightforward 

relationship which can be used for rapid damage estimates. 

3.10 METHODOLOGY 

Additional model details and methodology are now presented, followed by the methods that 

will be adopted to study and compare model performance.   

3.11 FRAGILITY MODEL METHODOLOGY 

Fragility functions were developed using the approach outlined below, similar to that described 

by Porter et al. (2006) for predicting seismic-damage to structural elements. Fdm(GLI) denotes the 

fragility function for damage state dm, defined as the probability that the foundation reaches or 

exceeds damage state dm, given a computed GLI, and idealized by a log-normal distribution (Eq. 

3.16):  
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𝐹ௗ(𝐺𝐿𝐼) = Φ( 
(

ಸಽ

 ೣ
)

ఉ
)    (3.16) 

where Φ denotes the Gaussian cumulative distribution function; xm is the median of the 

distribution, and β is the logarithmic standard deviation (i.e., dispersion).  

The manifestation severities for ground failure were thus analyzed to develop fragility 

functions using the two best-performing regional and global geospatial models (Figures 3.5a and 

3.5b). These functions show the probability of exceeding three manifestation states (MS), where 

the MS classifications are the criteria used by Green et al. (2014). The dataset was also analyzed 

taking 10,000 bootstrap samplings to capture finite-sample uncertainty. It can be seen that both of 

the geospatial models evaluated are capable of predicting not only the binomial occurrence of 

liquefaction ejecta, but also its extent/intensity, which should better relate to liquefaction damage-

potential. 

 

Figure 3.5 Fragility functions for predicting the severity of ground failure using the (a) 

GGM2 global geospatial model; and (b) RGM3 region-specific geospatial model. 
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Using the detailed survey inspection data, fragility functions of this form were also derived for 

the three severity states (minor, moderate, major) for each foundation type. Since RGM3 was the 

best performing in terms of AUC (see Chapter 2), its fragility functions for the compilation of all 

foundation types at different failure mechanism are shown in Figure 3.6 and are representative of 

the general trends across both models (further figures included in an Appendix). These functions 

generally had low probabilities of exceeding the damage states (DS) for the range of GLI values 

calculated for certain failure mechanisms (e.g., stretching, hogging, dishing). This is likely due to 

too few records observed and differences between surveys across events based on observed 

classification (e.g., tilting recorded at earlier survey and later survey classifying mechanism as 

global settlement with the same severity). However, a few of the failure mechanisms for larger 

failure types (e.g., global settlement) were generally better predicted by geospatial models. This 

held true for each of the shallow-foundation sub-types investigated.  

Additionally, the worst severity observed over any failure mechanism was used to develop a 

set of fragility functions for a worst case for the foundation type. This would be more useful in 

predicting damage for building inventories. In most cases, this worst case for all failure 

mechanisms could not develop “minor” damage curves but it could reasonably capture higher 

damage severities. 
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Poor Relation Fair Relation 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  
(e) 

 
 (f) 

 
(g) 

 
(h) 

Figure 3.6 Fragility functions for predicting the probability of damage to shallow foundations (All variants) using regional geospatial 

model 2015 RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) global settlement failure; (e) twisting failure; (f) 

discontinuous foundation failure; (g) tilting failure; (h) the failure mode with greatest observed severity.  
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3.12 VULNERABILITY FUNCTION METHODOLOGY 

While fragility functions can be a pragmatic tool for estimating damage to infrastructure, 

different assets (e.g., different types of buildings) have different sensitivities to ground 

deformation and it is thus ideal to use functions that directly predict damage and loss for the 

specific asset types (e.g., a particular type of foundation system). Considering loss, predictions are 

commonly made using a vulnerability function, which relates losses resulting from a hazard to 

parameters that characterize the hazard’s demand. Specifically, for a site at which liquefaction 

resulted in losses: (1) the liquefaction response of the site must be characterized; (2) the design 

and value of infrastructure assets must be documented; and (3) the asset damage resulting from 

liquefaction must be quantified monetarily. Problematically, damage and loss are usually assessed 

by private insurance companies and are closely guarded by insurers (e.g., to protect proprietary 

data) and owners (e.g., to protect the value of real estate). The paucity of infrastructure-specific 

data has prevented earlier methods to predict liquefaction from being further developed to predict 

its downstream effects. With the new availability of the New Zealand dataset these downstream 

losses can finally be investigated. 

There are a number of methods to develop vulnerability functions, the most desirable from a 

risk management viewpoint being those empirically derived from observations of the actual 

performance of assets in real earthquakes. Empirical observations can be too few or not provide 

enough detail as to distinguish between different damage manifestations, the resulting damage cost 

may still be relatable. The dataset of BDR records was compared to both models’ calculated GLI 

and regression analysis was performed to formulate a vulnerability function. The results are shown 

in Figure 3.7 and 3.8 along with 84th and 16th percentiles for the data points. Additional graphs 

with comparisons of vulnerability functions by foundation type are also included in the appendix. 
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Figure 3.7 2017 GGM2 model GLI and BDR relation.  

 

Figure 3.8 2015 RGM3 model GLI and BDR relation. 
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The data across the events varies considerably and the GLI relation is poor in capturing the 

higher range of BDR. Looking at the median data, the GLI relationship using the 2015 RGM3 

model may be useful however in rapid prediction of low estimates of losses. It may be that the 

coarse resolution of the geospatial parameters is unable to fully capture the finer scale damage 

mechanisms that relate to higher BDR values. 

3.13 RESULTS AND DISCUSSION 

The CES has provided an unprecedented quantity of high-quality liquefaction case history data 

and the opportunity to test the efficacity of liquefaction analytical models and their ability to 

predict infrastructure damage and loss. The development of geospatial models has opened an 

avenue for cost effective and rapid assessment of liquefaction potential. Their fair performance to 

predict the manifestation of liquefaction in the Christchurch, New Zealand region is encouraging. 

There is the potential for improvement as seen by their poorer performance in relating down to the 

finer scale of foundation failure mechanism, but they can capture larger failure types (e.g., global 

settlement). While the coarse resolution of the GLI can be improved, the 2015 RGM3 model shows 

potential and can be used for preliminary rapid damage estimates. As geospatial models are further 

refined and regional variations better accounted for, these relations should be able to improve and 

increase their portability around the globe.  
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Chapter 4. CONCLUSION 

The previous two chapters have covered many topics with some key findings. First, 

geotechnical models were shown to be significantly more efficient on a global scale, however 

geospatial models performed equally well for the regional Canterbury dataset. Considering the 

time- and cost-requirements of geospatial models this result is provocative for their use to assess 

liquefaction hazards, however further research is needed to improve their portability. Second, 

successive geotechnical models proposed over the last twenty years show little or no demonstrable 

improvement for the two datasets analyzed and new innovation is needed if this trend is to improve. 

Third, when looking at the Canterbury dataset the geospatial models perform well in predicting 

the occurrence and severity of liquefaction ejecta but are less capable of predicting the magnitude 

of resulting ground settlement. They also preformed fairly well in predicting the severity of certain 

large-scale shallow foundation damage mechanisms (e.g., global settlement) but fail to capture 

other important damage mechanisms. Fourth, the geospatial models were rather poor predictors of 

high BDR values but can provide some low-end estimates for preliminary rapid damage estimates.      

4.1 FURTHER RESEARCH 

In the course of this research, a few topics were identified where further investigation is 

needed. When evaluating the performance of the geospatial and geotechnical models for the 

Canterbury dataset (Figure 4.1), it was observed that geotechnical models performed better than 

geospatial models at sites with relatively homogenous sand, but worse at profiles with interbedded 

silts and clays (Geyin et al., 2019b). Further study of why these layers of silty soils cause an 

overprediction of manifestations would be beneficial. Additionally, advances in available 
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geospatial data sources were analyzed for improving model efficiency (Figure 4.2) and there is 

potential for further refining the geospatial models (Baird et al., 2018).   
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Figure 4.1 2015 RGM3 model GLI and BDR relation. 
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Figure 4.2 Alternate geospatial input parameters and model performance. 

“Standard” Inputs “High Quality” Inputs 
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(1) Damage State vs. GLI by foundation 
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(c) 

 
(d) 
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(g)  

 
 (h) 

Figure 1 Fragility functions for predicting the probability of damage to Timber Floor on Pile foundations using regional geospatial 

model 2017 GGM2: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) tilting failure; (f) 

discontinuous foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed severity. 
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(h) 

Figure 2 Fragility functions for predicting the probability of damage to Timber on Internal Piles with Perimeter Concrete Footing 

foundations using regional geospatial model 2017 GGM2: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting 

failure; (e) tilting failure; (f) discontinuous foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed 

severity. 
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(h) 

Figure 3 Fragility functions for predicting the probability of damage to Concrete Slab on Grade foundations using regional 

geospatial model 2017 GGM2: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) tilting failure; (f) 

discontinuous foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed severity. 
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Figure 4 Fragility functions for predicting the probability of damage to Mixed foundations using regional geospatial model 2017 

GGM2: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) tilting failure; (f) discontinuous 

foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed severity. 
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Figure 5 Fragility functions for predicting the probability of damage to shallow foundations (All variants) using regional 

geospatial model 2017 GGM2: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) tilting failure; (f) 

discontinuous foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed severity. 
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Figure 6 Fragility functions for predicting the probability of damage to Timber Floor on Pile foundations using regional geospatial 

model 2015 RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) tilting failure; (f) 

discontinuous foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed severity. 
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Figure 7 Fragility functions for predicting the probability of damage to Timber on Internal Piles with Perimeter Concrete Footing 

foundations using regional geospatial model 2015 RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting 

failure; (e) tilting failure; (f) discontinuous foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed 

severity. 
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Figure 8 Fragility functions for predicting the probability of damage to Concrete Slab on Grade foundations using regional 

geospatial model 2015 RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) tilting failure; (f) 

discontinuous foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed severity. 
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Figure 9 Fragility functions for predicting the probability of damage to Mixed foundations using regional geospatial model 2015 

RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) tilting failure; (f) discontinuous 

foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed severity. 
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Figure 10 Fragility functions for predicting the probability of damage to shallow foundations (All variants) using regional 

geospatial model 2015 RGM3: (a) stretching failure; (b) hogging failure; (c) dishing failure; (d) twisting failure; (e) tilting failure; (f) 

discontinuous foundation failure; (g) global settlement failure; (h) the failure mode with greatest observed severity. 
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(2) Vulnerability Models: BDR Relations by Foundation Type  

 

Figure 11 2017 GGM2 Building Damage Ratio data for ALL foundation types. 
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Figure 12 2017 GGM2 Building Damage Ratio data for Timber Floor on Piles foundations. 
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Figure 13 2017 GGM2 Building Damage Ratio data for Timber on Internal Piles with 

Perimeter Concrete Footing foundations. 
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Figure 14 2017 GGM2 Building Damage Ratio data for Concrete Slab on Grade foundations. 
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Figure 15 2017 GGM2 Building Damage Ratio data for Mixed foundations. 
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Figure 16 2015 RGM3 Building Damage Ratio data for ALL foundation types. 
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Figure 17 2015 RGM3 Building Damage Ratio data for Timber Floor on Piles foundations. 

 

 

 

 

 



www.manaraa.com

 

 

84

 

Figure 18 2015 RGM3 Building Damage Ratio data for Timber on Internal Piles with 

Perimeter Concrete Footing foundations. 
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Figure 19 2015 RGM3 Building Damage Ratio data for Concrete Slab on Grade foundations. 

 

 

 

 



www.manaraa.com

 

 

86

 

Figure 20 2015 RGM3 Building Damage Ratio data for Mixed foundations. 

 

 

 

 

 


